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From the Editor-in-Chief

Richard A. Brualdi

In this column, edited by one of the occupants of the position of editor-in-chief, we relate comments

from authors and readers concerning papers that have recently appeared in Linear Algebra and its

Applications. The columnwill contain errata, additional references, and historical and other comments

that we believe will be of interest to readers of the journal. With two volumes a year, each with 12

issues, we plan for this column to appear in the first issue of even-numbered volumes.

1. S.Furuichi, K.Kuriyama and K.Yanagi, Trace inequalities for products of matrices, 430 (2009),

2271–2276. In this paper, the following theorem is proved:

For positive numbers p1, p2, · · · , pm with p1 + p2 + · · · + pm = 1 and 2 × 2 positive definite

matrices T and A, we have the inequalities

Tr
[(

T1/mA
)m]

≤ Tr
[
Tp1ATp2A · · · TpmA

] ≤ Tr
[
TAm]

.

In the paper, it was remarked that ifm, n ≥ 3, the expression in themiddle is not necessarily real.

This leads to the following conjecture of the authors: Do the following inequalities hold or not,

for positive numbers p1, p2, · · · , pm with p1 + p2 + · · · + pm = 1 and n × n positive definite

matrices T and A

(i) Tr
[(

T1/mA
)m]

≤ Re {Tr [Tp1ATp2A · · · TpmA]} .

(ii) |Tr [Tp1ATp2A · · · TpmA] | ≤ Tr [TAm] .

Shigeru Furuichi and Minghua Lin have found a counter-example to this inequality as follows:

Consider the two positive definite matrices A and B given in the paper: C.R. Johnson and C.J.

Hilla, Eigenvalues of words in two positive definite letters, SIAM J. Matrix Anal. Appl., 23(2002),

916–928:

A =
⎛
⎝ 1 20 210

20 402 4240

210 4240 44903

⎞
⎠ , B =

⎛
⎝ 36501 − 3820 190

−3820 401 − 20

190 − 20 1

⎞
⎠ .

For the above matrix B, put T = B3, then (see p. 919 in the above paper)

0 > Tr[ABA2B2] = Tr[B2ABA2] = Tr[T2/3AT1/3AT0A].
Thuswecan takenonnegativep1, p2, p3 satisfying Tr[Tp1ATp2ATp3A] < 0bycontinuity. Therefore

(i) of the conjecture does not hold in general.
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In fact, for the above two positive matrices A and B,

Tr[B199/100ABAB1/100A] � −2270.33,

by using Mathematica and MatLab.

However the following inequalities are still remain open.

Tr
[(

T1/mA
)m]

≤ |Tr [
Tp1ATp2A · · · TpmA

] | ≤ Tr
[
TAm]

,

for positive numbers p1, p2, · · · , pm with p1 + p2 + · · · + pm = 1 and T, A ∈ M+(n,C), where

n ≥ 3 and m ≥ 3.

2. J.C. Hou, C.K. Li and N.C. Wong, Maps preserving the spectrum of generalized Jordan product

of operators, 432 (2010), 1049–1069. Jianlian Cui has pointed out to the authors that some

arguments in the proof of Theorem 3.1 are not entirely clear and accurate, and the authors

have provided the following corrections:

• Remove the paragraph “In the case s > r > 0, . . . . Thus A2 /= 0” after Claim 4, as we do

not need this in the proof.

• First line of the proof of Claim 6 in the proof of Theorem 3.1 should be

“Let f be nonzero in X∗
1 . Assume 〈x1, f 〉 = 〈x2, f 〉 = 1”.

• The proofs of Claim 6 and Case 2 of Claim 7 need some adjustment.

• Lemma 3.8 should be changed to:

Lemma 3.8 Suppose dimX ≥ 3. Let P, Q ∈ I1(X). Then PQ = 0 = QP if and only if there is

B ∈ B(X), which canbe chosen tohave rank2, such thatσ(PB + BP) = {2, 0},σ(QB + QB) =
{−2, 0}, andσ(BR + RB) = {0}wheneverR ∈ I1(X) satisfiesσ(PR + RP) = σ(QR + RQ) =
{0}.

One may see the details of these adjustments at

http://arxiv.org/abs/1004.3832 (arXiv:1004.3832v2 [math.FA]), or at

http://www.math.wm.edu/∼ckli/HLWaddendum.pdf.

3. Robert Shorten, Oliver Mason, and Christopher King, An alternative proof of the Barker, Berman,

Plemmons (BBP) result on diagonal stability and extensions, 431(1) (2009) 34–40. The authors

have provided the following clarification:

In Lemma 3.1 of it is stated that the cone CB defined in eqn. (7) is closed. However this cone, as

defined, may fail to be closed. Since the proof of Lemma 3.1 requires all such cones to be closed,

the correct statement is (CB denotes the closure of CB):
Lemma 3.1’ Let A ∈ R

n×n be Hurwitz and let Mi ∈ R
n×n, for i = 1, .., k. Then there exists a

positive definite P satisfying

ATP + PA < 0, MT
i P + PMi ≤ 0 i = 1, . . . , k (1)

if and only if there do not exist matrices X, Z with X ≥ 0, X /= 0 and Z ∈ CB such that

AX + XAT + Z = 0. (2)

All results are unchanged. Proofs are as before with cones replaced by their closures where

necessary. Theproofof Lemma3.1’ is identical to thepublishedproofof Lemma3.1except that (iii)

is replaced by “There exist nomatrices X, Z with X ≥ 0, X /= 0 and Z ∈ CB satisfying AX + XAT +
Z = 0,” (iv) is replaced by “The two pointed convex cones CA and CB intersect only at the origin”,

and CB is replaced everywhere by CB. In the sufficiency part of the proof of Theorem 3.1, eqn. (9)

should be replaced by the equationAX + XAT + Z = 0where Z is in the closure of {∑n−1
i=1 (BiYi +

YiBi) : Yi = YT
i ≥ 0}, and in subsequent statements BiYi + YiBi should be replaced by Z (note
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that the diagonal entries of Z must be non-positive, rather than strictly negative). Finally, in

the proof of Theorem 4.1 the reference to positive semi-definite matrices Y1, . . . , Yn should be

replaced by reference to Z in the closure of {∑n−1
i=1 (BiYi + YiBi) : Yi = YT

i ≥ 0}. An updated

manuscript is available online at www.hamilton.ie.

4. G. Corach and A. Maestripieri, Polar decompositions of oblique projections, 433 (2010), 511-

519. The authors have noticed that an older paper by I. Vidav contains some results similar to

theirs. In particular, Theorem 2 of the paper "On idempotent operators in a Hilbert space", Publ.

Inst. Math. (Beograd) 4(18) (1964), 157-163, by Ivan Vidav, solves the same problem treated in

Theorem 6.3. Essentially, he proves that, given closed range operators A, B acting on a Hilbert

space, which are positive semidefinite, then there exists an idempotent Q such that QQ∗ = A

and Q∗Q = B if and only if ABA = A2 and BAB = B2. In Theorem 6.3, they found the equivalent

condition PR(A)BPR(A) = PR(A) and PR(B)APR(B) = PR(B). In fact, one passes from Vidav’s identities

to theirs by multiplying at left and right by the Moore-Penrose inverse of A or B, respectively,

and from theirs to Vidav’s by multiplying by A or B, respectively. The identities of Vidav have

the additional advantage that they are polynomial identities, and they have been studied in a

much more general context than Hilbert space operators, for example, C. Schmoeger, Common

spectral properties of linear operators A and B such that ABA = A2 and BAB = B2, Publ. Inst.

Math. (Beograd) 79(93)(2006), 109-114.

5. Suk-Geun Hwang and Sung-Soo Pyo, The inverse eigenvalue problem for symmetric doubly

stochastic matrices, 379 (2004), 77–83, and Maozhong Fang, A note on the inverse eigenvalue

problem for symmetric doubly stochastic matrices, 432 (2010), 2925–2927. Fang gives a 3 × 3

counterexample to Proposition 1 of the first paper. Carlos Fonseca has sent a 2 × 2 counterexam-

ple. The 2-tuple (1,−1) satisfies the hypothesis of Proposition 1 but the only doubly stochastic

matrixwith eigenvalues 1,−1 is the backward identitymatrix and it is not positive. Fonseca also

pointed out that Theorem 4 in the paper by Hwang and Pyo appeared previously as Theorem 8

in the reference “Spectral properties of doubly-stochastic matrices" by H. Perfect and L. Mirsky

(Monatsh. Math. 69 (1965), 35-57).

6. R. ShortenandK.S.Narendra,Ona theoremofRedheffer concerningdiagonal stability, 431 (2009),

2317–2329. Robert Shortenhasprovided the following corrections: In Lemma4.2 the assumption

that cT is of the form [α, 0, 0, ..., 0] has been omitted. Namely, the lemma should read: (for

clarification, by leading submatrix we mean the n − 1 × n − 1 matrix obtained by removing

the first row and column of Q).

Lemma 4.2. Let A be a Hurwitz Metzler matrix. Let B = A − bcT be a Hurwitz matrix that is

not necessarilyMetzler, where cT = [α, 0, 0, ..., 0], for some non-zeroα . Let there exist a strictly

positive diagonalmatrixD such thatATD + DA = −Q1 ≤ 0withQ1 singular and irreducible, and

that the leading principal submatrix of Q1 is positive definite. Suppose further that BTD + DB =
−Q2 ≤ 0and that there isnootherdiagonalD > 0satisfying the strict inequalities (Q1 < 0,Q2 <
0). Then, there exists a diagonal matrix �,whose diagonal entries are not all zero, such that

det

(
A + �B�) = 0.

Also, in section 4, the text "transcendal part is maximised" should read "transcendental part is

minimized".

7. V. Nikiforov, The energy of C4-free graphs of bounded degree, 428 (2008), 2569–2573. Xueliang

Li and Jianxi Liu have observed that the two conjectures in this paper have been proved in a

general form by C. Heuberger and S.Wagnerwho apparentlywere unaware of these conjectures:

Chemical trees minimizing energy and Hosoya index, J. Math. Chem., 46(1) (2009), 214–230.

8. R.A. Brualdi, Spectra of digraphs, 432 (2010), 2181–2213. As stated in the paper, the inequality

(24) in Theorem 8.3 was first obtained by S. Kirkland. The block matrix statement in Theorem

8.3 was first proved by S.V. Savchenko in reference [96]. Savchenko has also remarked that the

results announced in reference [99] were proved in: S.P. Strunkov, On weakly cospectral graphs

(Russian), Mat. Zametki 75 (4) (2004), 614–623; English trans. in Math. Notes 75 (4) (2004),

574–582. He also notes that according to this paper by S.P. Strunkov, two digraphs are weakly

cospectral if and only if they have the same set of distinct eigenvalues. So, a priori, they can
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be isomorphic to each other. The paper: S.P. Strunkov, On weakly cospectral graphs II (Russian),

Mat. Zametki 80 (4) (2006), 627–629; English trans. in Math. Notes 80 (4) (2006), 590–592 is

also devoted to this subject.

9. Z. Stanić, On nested split graphs whose second largest eigenvalue is less than 1, 430 (2009),

2200–2211. The author has provided the following correction. Page 2204, lines 22 and 23:

The part “Hence, a3 ≥ 3 implies a1 + a2 ≤ 3. Moreover, if (a1, a2) ∈ {(1, 2), (2, 1)} then the

determinant is less than zero for any choice of the remaining parameters." should be replaced

with: “Hence, a3 ≥ 3 implies that at least one of parameters a1, a2 is equal to 1. Moreover, if

(a1, a2) ∈ {(1, 2), (2, 1)} then the determinant is less than zero for any choice of the remaining

parameters. Byputting a1 = 1and a2, a3 ≥ 3weget no solutions,while byputting a2 = 1weget

the following solutions: (a1, a2, a3, a4) = (3, 1, 6, l), (4, 1, 4, l), (6, 1, 3, l), (7, 1, 3, 8), (8, 1, 3, 4),
(9, 1, 3, 3) and (13, 1, 3, 2), where l ≥ 2."

Thus, Theorem 4.1 should read:

Theorem 4.1. Let G = C(a1, a2, . . . , an) be a connected NSG satisfying λ2(G) < 1. If n ≤ 4 then

G is an induced subgraph of some of the following graphs:

C(a1, a2, a3), where (a1, a2, a3) = (k, m, 2), (3, 1, 7), (5, 1, 5), (k, 1, 4), (k, 2, 3) or (1, 3, 3);
C(a1, a2, a3, a4),where (a1, a2, a3, a4) = (1, 2, k, l), (2, 1, k, l), (3, 1, 6, l), (4, 1, 4, l), (6, 1, 3, l), (7, 1,
3, 8), (8, 1, 3, 4), (9, 1, 3, 3), (13, 1, 3, 2), (k, 1, 2, l), (k, 2, 1, l), (23, l), (3, 23), (1, 3, 2, l), (2, 3, 1, l),
(32, 1, 12), (4, 3, 1, 8), (5, 3, 1, 7), (9, 3, 1, 6), (k, 3, 1, 5), (1, 4, 1, l), (k, 4, 1, 3), (2, 4, 1, 4), (1, 5, 1, 4),
(k, 6, 1, 2) or (1, 7, 1, 2),

for any choice of integers k, m ≥ 1 and l ≥ 2.

Consequently, the new solutions (3, 1, 6, l), (4, 1, 4, l), (6, 1, 3, l), (7, 1, 3, 8), (8, 1, 3, 4), (9, 1, 3, 3)
and (13, 1, 3, 2) should be added to Table 1 (page 2207) with preserving the lexicographical

ordering (the graph (3, 1, 6, l) goes between 10th and 11th, etc).

10. Semigroups Working Group at Law’08, Janez Bernik. Semigroups of operators with nonnegative

diagonals, 433 (2010), 2080–2087.RomanDrnovsekhaswritten to say that the titleof theworking

group was incorrectly typeset and should read: Semigroups Working Group at Law’08, Kranjska

Gora. Kranjska Gora is a city in Slovenia where the working group originated the research in this

paper. Janez Bernik was the corresponding author for this paper.

11. J. Li, W.C. Shiu, W.H. Chan, Some results on the Laplacian eigenvalues of unicyclic graphs, 430

(2009), 2080–2093. The authors have written to correct some mistakes in the proof of Theorem

3.3. In the proof of that theorem, some incorrect graphs at Figs. 7 and 8 were given. The proof

of Theorem 3.3 is rewritten as follows. All notation and the numbering of figures, lemmas and

theorems are the same as in the paper.

Theorem 3.3. For n ≥ 7, μ2(U) ≥ 3 for U ∈ U+
n ; and the equality holds if and only if U∼=Ui

n

(2 ≤ i ≤ 
 n+1
2

�).
Proof. Let Cl be the unique cycle in U, l ≥ 3.

If l /= 4, then U contains Cl + Nn−l as a spanning subgraph, where Nm is the null graph of order

m. By Lemmas 2.1 and 3.1, we have μ2(U) ≥ μ2(Cl + Nn−l) ≥ 3.

If l = 4, then U contains one of the graphs Hi + Nn−6 (i = 3, 4, 5) or G1 + Nn−6 as a spanning

subgraph, where Hi (i = 3, 4, 5) are shown in Fig. 5 and G1 is shown in Fig. 6. Since μ2(H3 +
Nn−6) = μ2(H4 + Nn−6) = μ2(H5 + Nn−6) = 3 and μ2(G1 + Nn−6)

.= 3.414. By Lemma 2.1,

we have μ2(U) ≥ min
3≤i≤5

{μ2(Hi + Nn−6), μ2(G1 + Nn−6)} = 3.

Hence we have μ2(U) ≥ 3.

In the following, we shall show that for each U ∈ U+
n ,μ2(U) = 3 if and only if U∼=Ui

n for some i.

Fig. 6. Unicyclic graph G1.
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Fig. 7. Unicyclic graphs C1
6 and Gi (2 ≤ i ≤ 7).

Fig. 8. Unicyclic graphs Gi (8 ≤ i ≤ 14).

From Lemma 3.2, we know that μ2(U
i
n) = 3 for n ≥ 7. Let Cl be the unique cycle in U. Then

Cl + Nn−l is a spanning subgraph of U, n ≥ 7 and n > l ≥ 3. By Lemma 2.1, μ2(U) ≥ μ2(Cl +
Nn−l) = μ2(Cl). Since μ2(U) = 3, by Lemma 3.1 we have l = 3, 4 or 6.

Suppose l = 6. Since n ≥ 7, C1
6 + Nn−7 is a spanning subgraph of U, where C1

6 is shown in Fig. 7.

By Lemma 2.1 again, 3 = μ2(U) ≥ μ2(C
1
6 + Nn−7) = μ2(C

1
6)

.= 3.414 > 3. It is impossible.

If l = 4, then U contains one of the graphs G1 + (n − 6)K1 or Gi + (n − 7)K1 (i = 2, 3, 4, 5, 6, 7)
as a spanning subgraph, where G1 is shown in Fig. 6 and Gi (i = 2, 3, 4, 5, 6, 7) are shown in Fig.7.

By Lemma 2.1, we haveμ2(U) ≥ min
2≤i≤7

{μ2(G1 + (n − 6)K1), μ2(Gi + (n − 7)K1)} = μ2(G5 +
(n − 7)K1)

.= 3.058. It is impossible too.

Suppose l = 3. If U � ∼=Ui
n, then U contains one of the graphs G8 + (n − 5)K1 or Gi + (n − 7)K1

(i = 9, 10, 11, 12, 13, 14) as a spanning subgraph (n ≥ 7), where Gi (i = 8, 9, 10, 11, 12, 13, 14)
are shown in Fig. 8. By Lemma 2.1, we haveμ2(U) ≥ min

9≤i≤14
{μ2(G8 + Nn−5),μ2(Gi + Nn−7)} =

μ2(G11 + Nn−7)
.= 3.117. It is impossible. So by Lemma 3.2, for any U ∈ U+

n , ifμ2(U) = 3, then

U∼=Ui
n.

From the above discussions, the proof is completed.


